
C++ Teasers

Frank B. Brokken

Center of Information Te
hnology, University of Groningen

De
ember 2013 - Mar
h 2014

1 About the teasers

If you're interested in C++, then this do
ument may
ontains some interesting

(and maybe teasing) questions.

Every now and then I may update the questions.

Most of these should be easy to answer, espe
ially if you've attended my C++

ourses. Can't attend them? I may have a tailored
ourse for you. Just
onta
t

me if you're interested.

2 Questions

• When to de�ne enums? Should they be strongly typed? When should

they be? When is de�ning a stronly typed enum not really ne
essary?

• Why use ++idx rather than idx++ in, e.g.,

for (size_t idx = 0; idx != end; ++idx)

...

• Why prefer != over < in for-stmnt
onditions?

• How
an you be sure that you're not falling in the o�-by-one trap when

using for-stmnts? Both in the in
rementing and de
rementing
ase?

• What's your philosophy for using a for-statement? And a while-statement?

(or don't you have one?)

• When do you prefer an if-stmnt over a swit
h-stmnt? And v.v.?

• Do you ever prefer neither? If so, what's your alternative?

• What is your philosophy for de�ning
lasses?

1

• How do you implement (rather than design) your
lass members? What

is your software design philosophy here?

• new Type[n℄
alls Type's default
onstru
tor. What do you do if you

need to de�ne n Type obje
ts using a non-default
onstru
tor?

• The intent is to use pla
ement new to enlarge arrays of Obje
t obje
ts.

Assume initially you do ptr = new Obje
t[1℄. Sin
e pla
ement new is

used to
reate a larger array, we use operator delete ptr to return the

previously allo
ated array just before assigning ptr to the enlarged array.

Why does the program (usually)
rash with a run-time error
omplaining

that ptr
ontains is an invalid pointer?

• Do you have any good arguments for using pla
ement new?

• Why won't the
ompiler allow you to pass a Type ** argument to a fun
-

tion de�ning a Type
onst ** parameter?

• Why should you put '
onst' behind the things that are
onstant, and not

before?

• How
an you provide
ontext to signal handlers?

• What is your approa
h to using shared memory? Can you do so without

violating prin
iples of designing reusable software?

• How do you distinguish lvalue and rvalue uses of the index operator?

• How to use the
opy generi
 algorithm and std::istream_iterators

to �ll a std::ve
tor<std::string> with the lines, rather than blank-

delimited words from an std::istream?

• Why is it a bad idea to use 'virtual' for members of derived
lasses if their

base
lasses also spe
i�ed 'virtual'? What should you do instead?

• Did you ever have to implement a swap-member? How do you implement

a swap member if your
lass features referen
e members?

• When do you
onsider adding members having rvalue referen
e parameters

to your
lasses?

• Why is inheritan
e used?

• Is inheritan
e ever useful without polymorphism?

• What is a polymorphi
 base
lass? Why would you use one?

• What are VTables and where are they? Can you organize your software

in su
h a way that you have one answer that's always
orre
t?

• Why do obje
ts of polymorphi

lasses o

upy more memory than obje
ts

of non-polymorphi

lasses?

• What is stati
 polymorphism? Do you have an example?

• What's so interesting about rvalue referen
e parameters in fun
tion tem-

plates?

2

• How do you design a
onst_iteratorwhi
h is derived from a std::iterator

reated as a std::input_iterator_tag, but whi
h also allows you to use

a mat
hing std::reverse_iterator?

• Why don't
lasses derived from Base have to be polymorphi
 when storing

newly allo
ated obje
ts of su
h
lasses in a std::shared_ptr<Base> or

std::unique_ptr<Base> obje
t?

• Could you design and implement a
lass template expe
ting a typename

Base, a

epting a pointer to any
lass that is derived from Base (either at

onstru
tion-time or using a resetmember, just like std::shared_ptr<Base>

or std::unique_ptr<Base>), properly deleting the Derived
lass obje
t

when the obje
t of your
lass goes out of s
ope? (Your
lass may not use

or rely on polymorphism either).

3

